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The unsteady flow past a circular disk is studied with hot-wire and microphone probes 
positioned in planes normal to the axis of symmetry a t  3 and 9 disk diameters down- 
stream. Both the fluctuating velocity and pressure signals are shown to be continuously 
dominated by large-scale coherent motions enveloping the wake flow as a whole. This 
suggests narrowband two-point space correlations as an experimental tool for 
describing spatial coherence and phase characteristics of the basically random signals. 
The specific symmetry imposed by the axisymmetric boundary conditions of the disk 
enables a decomposition of the large-scale flow phenomena into relatively simple 
elementary structures or modes. The resulting azimuthal constituents are quantified 
in terms of their respective magnitudes and individual power spectra. 

The capability of the approach t o  uncover characteristic features of turbulence as 
far as its large-scale domain is concerned is demonstrated by a comparison of the 
present results with certain remarkably different features found in earlier jet flow 
investigations: the m = 1 and m = 2 modes are found to clearly dominate in wakes 
whereas the m = 0 and m = 1 modes were dominant in jets in a relevant range of 
Strouhal numbers. These large-scale coherent structures are more than just an 
interesting flow phenomenon; they must have a tremendous back-reaction on rigid 
flow boundaries (particularly if these allow a vibrational response) and may give rise 
to specific feedback mechanisms. 

The analysing technique proposed for studying large-scale flow phenomena in jets 
and wakes removes part of the randomness in the turbulent signals without artificially 
exciting or forcing them in one way or another. No conditional sampling of the 
naturally occurring fluctuations is required, either. The method may be applicable to 
other than strictly axisymmetric flow configurations, too. 

1. Introduction 
Turbulence research is often concerned with measuring the intensities, power 

spectra and covariances of random properties (usually velocities) in the flow under 
investigation. One objective of these single-point measurements is to study the effect 
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of turbulence on the mean flow behaviour via some form of Reynolds’ equations. 
Mixing length or eddy models are sometimes adopted by analogy with the kinetic 
theory of gases. Typical eddy scales 1 and convection velocities U, can be determined 
from conventional space-time correlation measurements. 

In  contrast to the molecular motion in gases, however, there is also the possibility 
of a turbulent motion at one point of a continuous fluid flow influencing the simul- 
taneous motion a t  another distant point. This weakly coherent turbulent motion, 
though more organized than molecular motion on a microscale, may still appear as 
completely random on the mean flow scale L with 1 < L defining what is usually 
termed ‘small scale turbulence’. It is to such random fields that statistical des- 
criptions are fully applicable and quasi-local averaging procedures adequate. 

If, at least, part of the turbulent motion is found to be coherent over distances 
of the order L our standard description of turbulence, much of which was guided by 
the idealized theoretical concept of isotropic turbulence, becomes less appropriate. 
When dealing with ‘large-scale turbulence’ one is forced to look at the unsteady flow 
field as a whole and simultaneously. Turbulent motions of this kind represent them- 
selves as characteristic structures which dominate the flow rather than as local per- 
turbations of a pre-existing mean motion. Due to their dominating both the steady 
and unsteady flow field these large-scale turbulent structures are intimately tied up 
with the geometrical and symmetry conditions imposed on the flow by its boundaries, 
e.g. of the nozzle in the case of a free jet or of the body in the case of a wake 00w. 

The large-scale structures, which will be described in more detail in the ensuing 
sections, bear some faint resemblance to Townsend’s (1956) ‘large eddies’ which 
are thought to arise spontaneously as a chance configuration of the small-scale eddies. 
In  this model it is still the small-scale eddies that contribute most to the locally 
measurable mean-square turbulence energy. Townsend’s hypothesis of randomly 
occurring chance eddies led Grant (1  958) to define physical models of ‘ typical eddies ’ 
in two-dimensional turbulent wake and boundary-layer flows on the basis of the 
following. 

(1) The eddies are of a size much larger than any other component of the turbulence. 
(2) The eddies are placed at random in the x, y plane. 
(3) The motions of adjacent or overlapping eddies are statistically independent. 
From the nine velocity correlations Rii(r j )  measured Grant postulated ‘vortex pair 

eddies’ with their axes in the x, y plane and with opposite circulations in the x, z plane 
of the cylinder wake. For the boundary layer Grant postulated ‘mixing jets’ with 
velocities mainly in the x, y plane to fit his correlation curves. His idea of sudden 
outward eruptions of fluid from the laminar sublayer near the wall into the turbulent 
region prompted a number of researchers to hunt and pin down such figurative pheno- 
mena as ‘ bursts ’, ‘ spots ’, ‘ sweeps ’, ‘ slugs ’, ‘ puffs ’, ‘ bulges ’, or even more illustrative 
‘buffaloes’ and ‘tornadoes’. 

According to Townsend’s model, initiation of any type of large eddies is by mere 
coincidence or alignment of small eddies rather than by a natural tendency towards 
order of the unsteady flow as one coherent entity. Special detection schemes employing 
conditional ensemble averaging (see, e.g. Kovasznay, Kibens & Blackwelder 1970) 
and sophisticated pattern-recognition methods were already invented in order to 
explore these new statistical phenomena. 

The present paper deals with turbulent structures in a distinctly different way 
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which was initially stimulated by narrowband, unconditioned two-point correlation 
measurements of Fuchs ( 1  972) performed in the turbulent pressure field of a circular 
jet. These revealed a very regular, well-ordered turbulence pattern travelling in the 
central mixing region in an almost deterministic wave-like manner. By contrast to the 
highly intermittent character of the turbulent features described above, large-scale 
structures as we see them are more or less continuously present in the flow. They are 
absolutely predominant in the turbulent signal at  e.g. a fluctuating pressure or 
velocity probe inserted in a jet flow. 

The last mentioned coherent structures could be shown by Armstrong, Michalke 
& Fuchs (1977) to exist in a wide range of jet Mach and Reynolds numbers, namely 
0.1 < M a  < 0.7, lo4 < Re < lo6. In fact, no method so far known will prevent their 
occurrence in the axial range 1 < x / D  < 12. These structures should therefore not 
be confused with those that can be artificially excited by internal or external dis- 
turbances acting on the flow. It is also pointed out that an ordinary cross spectral 
analysis is fully sufficient for studying these structures with no conditional sampling 
technique being required. 

2. A quantitative description of turbulent structures 
Ever since Townsend (1956) put forward his ‘big eddies ’ idea attempts were made 

to condense more than just vague qualitative information on typical eddy structures 
from the shape of measured two-point correlation functions of the turbulent velocity 
field. None of these efforts, however, has enabled a strictly quantitative analysis. 
Most of our own previous work on turbulence structures lies buried in the jungles of 
jet noise literature (refer e.g. to Michalke & Puchs 1975). It seems to have passed 
largely unnoticed by the fluid dynamicists proper. Our approach is fairly fundamental 
and almost universally applicable, although its specific virtue could, up till now, 
only be demonstrated for axisymmetric free shear flows. 

Given an arbitrary space correlation function R(ri) of a turbulent field quantity, 
sayp(t), we may straightforwardly define its Fourier transform in any one of the three 
dimensions of displacement ri, 

P(k,) = Jv R(ri) exp (ikj r j )  dri. (1) 

The resulting complex wavenumber spectrum F(k , )  should not be confused with 
frequency spectra P(w) from Fourier transforms in the time domain. R may, however, 
represent the correlation C, of a narrowband frequency component pu(t). 

For illustrative purposes we may consider the one-dimensional transform under 
two very special conditions (figure l),  

( 1 )  R be a real function of the displacement r,  R*(r) = R(r) .  
(2) R be symmetric in r ,  R( - r )  = R(r) .  

It is pointed out that r need not be in the direction of the mean flow and hence k in 

F ( k )  = 2 R ( r )  cos krdr 
10- 

is not necessarily associated with any kind of wave propagation or convection of 
disturbances with the mean flow. 
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FIGURE 1. Idealized two-point space correlation in small-scale isotropic 
turbulence. 1 = integral length scale or eddy size. 

It is only the most trivial case k = 0 that is frequently called upon when a random 
turbulent field is to be characterized, 

with 

P m  

(4) 

defining the scale or size of an average eddy. If, for instance, R(r)  always had a 

( 5 )  
Gaussian form, 

1 would indeed suffice to completely characterize the turbulent field. Under more 
general circumstances, however, where R ( r )  may exhibit one or more zero crossings, 
1 does not seem to be a very significant parameter to be determined. 

Several ideas are currently ventilated in our group how to make use of the full 
wavenumber spectrum F ( k )  when large-scale turbulent structures are to be described. 
Potential applications lie in two-dimensional ( 2 4  flow configurations with certain 
boundary conditions on which we cannot elaborate here. 

Our approach seems particularly attractive and has, in fact, already proved to be 
a very handy tool as far as axisymmetric free shear layers are concerned. Before we 
pi-oceed to the practically important jet and wake flows, we remind ourselves that, 
for any approach via ordinary long time averages R(r)  to be successful, it  is essential 
to have the structures continuously dominate the unsteady flow field. The well- 
correlated portion of p( t )  would otherwise be degraded by the other contributions to 
the total turbulent signal. We note that we are interested only in self-generated, i.e. 
not externally driven disturbances. The turbulent signals will hence always remain 
basically random in time. 

Under these fairly general conditions a maximum of useful information about the 
space-time structure of a turbulent field can be extracted from the complex two-point 
cross-spectral density function 

where both the coincident and the quadrature spectra, C, and Q,, may be functions 
of the moving as well as of the fixed probe positions, indices 2 and 1. For a most 

R(r) = R(0) exp [ - ~ ( r / Z ) ~ l ,  

R, = C,+iQ,, ( 6 )  
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convenient description of the coherent phenomena in turbulence the total information 
is suitably subdivided into three categories according to the following expression, 

with 

R W = q  w , l  P w , 2  - I R ~ I  exp i$w, 
Pw,  1 P w ,  2 

(7 )  

( A )  Pw = @ ) h  denoting the local power spectral density, or strenjfh, of the turbulent 

(B)  y = lRwl/(fjw,l f jw,z) = (C~+&~)~/(17,,ljYw,z) denoting the degree of statistical 

(C) $w = $w, - $wrI denoting an averaged phase relationship between both signals. 
Category ( A )  is normally dealt with in conventional turbulence studies with 17, 

or jj suitably normalized with the appropriate mean flow properties. Category ( C )  
contains all the information concerning the convection of disturbances by the flow. 
In this paper we shall focus our attention on mainly the coherence properties and 
restrict our analysis to a specific class of flow configurations. 

property measured, 

correlation, or coheren.ce, of signals a t  two distant points in the flow, 

3. The azimuthal constituents of turbulence in axisymmetric flows 
Strictly axisymmetric flow conditions allow three very decisive assumptions to be 

made. If, to start with, both probes are located on a constant radius r in a plane 
x = const. normal to the axis of symmetry one may easily convince oneself that, 
for circumferential displacements A$, 

( I )  Q, is identically zero within experimental error provided that no mean swirl is 
superimposed on the flow, i.e. there is no preferred helical propagation for the disturb- 
ances while travelling downstream so that kW = tan-lQw/Cw = 0. Hence we are 
dealing with the real function R, = Cw = R,*. 

(2) For similar symmetry reasons, Cw is symmetric in A6,  i.e. Cw( -A$) = Cw(Aq5). 
(3) The most important feature of axisymmetric flows, however, is the spatial 

periodicity inherent in circumferential correlation functions at any arbitrary radius, 
Cw(A# + 72277) = Cw(A$). 

Under these very special conditions the Fourier integral (2) can be replaced by a 
much simpler expression, 

F = Cwsm = n o  /TCw(A$)cosmA$dq5, 

with Cw,m defining the discrete coefficients in a Fourier series of C,, 

m 

m=O 
Cw(A#) = C,.,cosmAQt. 

With its value at A$ = 0, 

it  is made possible to define the fraction of fluctuating energy contained in each 
individual azimuthal constituent of order m by 
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FIGURE 2. Coherence spectrum of turbulent pressure fluctuations near circular jet flows from 
Fuchs & Michel (1977). A$ = 60". - - - - - , model jet at 2 = 6D, r = 1.50, Ma = 0.3; -, j e t  
engine at x = 5 0 ,  r = 1.40, Ma = 0.52. 

Co-spectra C, are readily obtained with the aid of a digital computer by using a 
Fast Fourier Transform routine thus enabling several different kinds of representation 
of turbulence structure. 

(a) The first is based on the spatial coherence of the turbulent quantity as defined in 
equation (7) which, in this special case, with &,, = j3- = jjU would read 

With y varying between 0 and 1, it normally represents a measure of how coherent two 
turbulent signals are. Its magnitude usually exceeds the absolute value of corres- 
ponding broadband correlation coefficienk R,,/F, 17, and hence may help to detect 
large-scale coherent motions where ordinary correlation analyses fail. The variation 
of y with frequency also shows a t  what frequencies coherent structures are present or 
strongest. To illustrate this, figure 2 exhibits the coherence of turbulent pressure 
fluctuations p ( t )  in the near field close to a circular model jet and a real jet engine 
a t  geometrically similar points. Coherence peaks at a typical frequency or better 
Strouhal number St = f D/ U (f = frequency, D = nozzle diameter, U = exit velocity) 
around 0.3 whereas the corresponding power spectra @: at that position peak at much 
lower St. Plotting coherence spectra, however, does not yet tell us very much about 
the specific character of the coherent motions involved in any particular flow. 

( b )  We can gain more insight into the structures responsible for the high coherence 
observed in the jet pressure field by picking a narrowband component C, preferably 
in that narrow range of frequencies where the coherence is strongest and look at its 
variation with A# at the circumference of the jet. Figure 3 shows a plot of 

C,/fi: = f (A#);  St = const. (12) 

right in the middle of the mixing region of a circular jet ( r  = 0.50). The very moderate 
fall of the correlation with increasing probe displacement is characteristic of the jet 
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FIGURE 3. Circumferential correlation of a narrowband component of the turbulent pressure field 
inside the mixing region of a model jet (a)  without and (b )  with an axisymmetric centre body 
according to Michel & Fuchs (1978). d / D  = 0.4, x = 30, r = 0.50, M a  = 0.15, St = 0.45. Right: 
corresponding azimuthal constituents. 

pressure field. Similar circumferential correlations in wake flows will later be seen to 
exhibit completely different curves over A# thus indicating, if only qualitatively, 
significant differences in the respective turbulent structures involved. 

(c) The last assertion of correlations uncovering the nature of large-scale structures 
can be converted into a strictly quantitative analysis by displaying the strength of the 
individual azimuthal constituents, pt,,, in proportion to the overall, i.e. unresolved 
quantity $2 according to equation (lo), 

Cu,,J@: = , f ( m ) ;  St = const. (13) 
The result of such a Fourier analysis is also depicted in figure 3. The extraordinary 
dominance of the m = 0 and m = 1 constituents must be regarded as a characteristic 
feature of the early development well into the transition region of a turbulent jet. 
It is not easily affected by internal or external disturbances as may be seen by com- 
parison with case ( b )  when an axisymmetric centre body is introduced through the 
nozzle. 

The m = 0 constituent is characterized by an in-phase relationship of signals p ,  
and p ,  detected simultaneously by probes facing each other across the jet wherea,s 
the m = 1 mode is due to signals in anti-phase. Using pl +p, or pl  -p ,  signals thus 
enables discrimination of one mode against the other as was demonstrated by Fuchs 
(1973). Moore (1977) made use of a similar trick when he, very successfully, visualized 
the two modes separately by multiple-exposure flash photographs triggered with 
large signals pl +p ,  or p1 -p,, respectively (see Moore's plate 5). 

The above described Fourier expansion of turbulent structures is particularly 
useful whenever we find a small number of modes prevailing. Needless to say that i t  
is not restricted to the instantaneous or time averaged value of a turbulent quantity 
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FIGURE 4. Normalized power spectra of azimuthal constituents of jet pressure at x = 30, 
r = 0.5D from Michalke & Fuchs (1975). -, normalized overall (unresolved) power spectrum; 
0-0," = 0; x - - x ,  m = 1; .-.-., m = 2; +--+, m = 3; A-A, m = 4. 

a t  a constant axial and radial position. In  calculating noise generated by turbulence 
e.g., one has to deal with more general two-point correlations and hence to resolve 
both C, and Q, or S, correspondingly (refer to Armstrong et al. 1977). 

( d )  In  many applications one may be interested in not only the coherence of a 
turbulent field and the strength of the different structures relative to one another 
(representations (1 1) through (13)), but also in suitably normalized power spectra of the 
azimuthal constituents individually, 

Herein j7k is the mean square of mode m in the measuring bandwidth Af chosen. A 
typical such plot is shown as figure 4 for the circular jet. 

For a complete mapping of a highly inhomogeneous and non-isotropic turbulent 
field one would, of course, need to also plot the spatial variations of all the representa- 
tions discussed above. 

4. Mean and mean-square characteristics of the flow past a circular disk 
The main objective of this paper is to describe characteristic features of the tur- 

bulence in axisymmetric wakes as compared to that in axisymmetric jets. Our ap- 
proach is novel only as far as the interpretation of two-point cross correlation functions 
is concerned. To this end, the structure of the mean flow in which the measurements 
are done is irrelevant. Likewise, the intensity or strength of the turbulent fluctuations 
the geometrical structures of which are to be described, are of secondary importance. 
We have therefore decided to discuss the more conventional single-point measure- 
ments with respect to similar data published in the relevant literature in a separate 
paper by Fuchs, Mercker & Michel (to be published). 

It may suffice here to report that all our experiments were performed with axi- 
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st 
FIGURE 5. Shape of power spectra of turbulent jet pressure fluctuations a t  various downstream 
positions (unpublished data by R. R. Armstrong). M a  = 0.3, Re = 7 x lo5; r = 0 . 5 0 :  0, x = 3 0 ;  
x ,x = 6D; 0, x = 9D; A,x = 12D.r = 0;  + ,x = 3 0 .  

symmetric bodies (a disk and a 120" cone), D = 50mm in diameter, mounted normal 
to  the flow in an open jet wind tunnel of 1 m diameter. The Reynolds number as 
based on D was held constant a t  about 5 x lo4, a value typical of most of the previous 
experiments. The downstream stagnation point e.g. was x = 2 . 5 0  downstream from 
the disk. It marked the region where the root-mean-square (r.m.s.) pressure ji reaches 
its maximum of nearly 12 % of the total head 0.5pU2. The pressure signals from two 
B & K condenser microphone probes (& in.) fitted with nose cones seem not to  have 
been contaminated too badly by acoustic or turbulent background noise at least in 
the measuring plane x = 30. At x = 9D, where pu;/O.5pUZ hardly exceeded 0.03, the 
pressure signals could not be related to the turbulence structure of the wake and 
hence measurements in that plane were restricted to the streamwise velocity fluctua- 
tions from linearized constant temperature hot-wire anemometers. 

5. Quasi-periodic wake phenomena 
Free jet turbulence was chosen first for illustrating the usefulness of our quantitative 

approach to  large-scale structures. Figure 4 showed that the dominance of only a few 
lower order constituents is restricted to  a fairly narrow range of Strouhal numbers 
with their respective power spectra & peaking at almost exactly the same frequency 
as $:, the overall (unresolved) power spectrum. This spectral peak is seen in figure 5 
to  vary considerably with downstream position. According to Laufer, Kaplan & Chu 
(1973), the coalescence and pairing of two or more adjacent vortices is responsible 
for this apparently reversed cascade process whereby smaller scales or wavelengths 
are continuously converted into larger scales while travelling downstream. It is 

7 PLY 93 
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0 0.1 0.2 0.3 0.4 0.5 

FIGURE 6. Shape of power spectra and coherence spectra of streamwise veIocity fluctuations in the 
wake of a circular disk. D = 50mm, U = 15m/s. x , power spectrum a t  2 = 9D, r = 0 . 8 3 0 ;  
0 ,  Roberts' (1973) data; 0, coherence spectrum, A$ = 189"; A, Roberts' (1973) data. 

St - 

0.2 0.3 0.4 0.5 0.6 
0.01 h 

0 0.1 

St 
FIGURE 7. Shape of power spectra and coherence spectra of streamwise velocity fluctuations in 
wakes. Re = 5 x 104. x ,power spectrum at x = 3 0 ,  r = 0.750; 0, coherence spectrum, A# = 180"; 
- _ _  , cylinder wake power spectrum by Surry P. Surry (1967), 2 = 7.450, r = 0.380; ---, 
triangular cylinder wake power spectrum by Mercker & Fiedler (1978), z = 3 0 ,  r = 1.60. 
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FIGURE 8. Shape of power spectrum and cross spectrum of pressure fluctuations in disk wake at 

x = 30, r = 0.750;  x , power spectrum; 0, cross spectrum, Aq5 = 180’. 

recalled, however, that modelling the turbulence by annular vortex rings, i.e. by 
merely the m. = 0 mode, is surely an oversimplified picture of the large structures in 
a jet. It would be equally misleading if one thought of the coherent motions as simple 
travelling waves with a periodicity induced, once for all, by the vortex shedding at  the 
nozzle lip. 

That view of a reguIar vortex street is more appropriate when dealing with the large 
structures in wake flows. The non-dimensional velocity power spectra, 

%/Gn*x = f(W, (15) 

in figures 6 and 7 have maxima around St, = 0.135 which are considerably narrower 
than those of the jet pressure spectra (figure 5 )  and with St, hardly varying at  all 
between x = 3 0  and 9D. The shape of the spectrum measured at  x = 9D compares 
favourably with Roberts’ (1973) data (full circles in figure 6) obtained at a Reynolds 
number 7-8 x 104 as compared to 5 x 104 in our experiments. It may be noted that 
these spectra look very much the same as those in the wake of circular or triangular 
cylinders in a cross flow. The dashed curves in figure 7 represent the results of Xurry 
& Surry (1967) a t  Re = 2.6 x lo4 and of Mercker & Fiedler (1978) at  Re = 5.2 x lo4. 
Surry & Surry also report a decrease in the ratio of the peak height to the height of 
the underlying ‘base ’ spectrum with increasing x/d with the peak frequency itself 
remaining constant in accordance with our disk results. 

The periodicity around St, = 0.135 is also visible in the fluctuating pressure at 
x = 3 0  (figure 8). These spectral analyses suggest that underlying the apparent chaos 
in zxisymmetric wakes, there may be a well-ordered turbulence structure of a similar 

7-2 
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nature as in a KBrmBn vortex sheet. A possible reason for their not having been 
observed in the past may be that the anti-symmetric structure which so obviously 
dominates the vortex street in a plane normal to the cylinder does not find a similarly 
predetermined orientation in the wake of an axisymmetric body as it does in the 
cylinder wake. While the resulting randomness will presumably render visualizations 
of the structures as difficult as in a round jet, it leaves our quantitative approach 
entirely unaffected since this is based on straightforward long time averaged covariance 
measurements. 

6. Coherence spectra in the axisymmetric wake 
We commenced our analysis of axisymmetric wake turbulence by determining its 

coherence y according to equation ( 1  1)  as a function of St. For measuring positions 
facing each other across the wake (A$ = 180') we found y values above 0.85 at the 
vortex shedding frequency f,. 

In  figure 8 the magnitude of the pressure cross spectrum, S,, normalized with its 
maximum value at St,, is plotted as 

SJS,,,, = f (St) ,  A$ = 180' 

together with the corresponding power spectrum of the pressure. One may clearly 
distinguish three easily separable frequency regimes. 

(i) Near fo the cross spectrum exhibits a peak which is exceptionally narrow indicating 
a particularly strong periodicity and coherence of the vortex shedding mode. 

(ii) At twice the vortex shedding frequency, 2f,, a second though less clear-cut peak 
is discernible. This may be taken as a jirst harmonic of the vortex shedding mode 
which could not be identified in the power spectrum of the pressure. Between these two 
peaks the cross spectrum drops to very small values indicating that outside these 
characteristic frequency regimes the underlying ' base ' cross spectrum is very small 
indeed. The first and even a second harmonic can be clearly identified in the velocity 
power spectra measured by Mercker & Fiedler (1978) in the wake of a wedge (compare 
with figure 7) .  

(iii) A third broad hump is seen in figure 8 to arise a t  frequencies well below f o ,  
which also manifests itself in the corresponding power spectrum. Its origin is less 
obvious than that of the two other peaks. 

In the corresponding cross spectra of the axial velocity fluctuations the first regime 
is even more pronounced than that in the pressure with SJS,, falling below 0.004 
and 0.008 for St = 0.065 and 0.185, respectively. This prompted us to plot the related 
auantitv 

in figures 6 and 7 .  Again Roberts' (1973) data a t  .r = 9D fit in quite well. The scatter 
at  higher frequencies renders the identification of a peak a t  2f0 difficult. 

In  order to'resolve t'he intrinsic structure of fluctuabions in the three frequency 
regimes separately we will now analyse circumferential correlations for St com- 
ponents a t  0.005, 0.135, and 0-27 of both pressure and velocity. 
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0" 30" 60' 90" 120" 1.50" 180" 

A@ --- 
FIGURE 9. Circumferential correlation and azimuthal constituents of narrow band components 
of the streamwise velocity fluctuations in disk wake a t  z = 9D, r = 0.830.  0, St = 0.005; 0, 
St = 0.135; A, St = 0.270; (H, 0 ,  A, corresponding data of Roberts (1973)).  

7. Azimuthal constituents of large-scale wake structures 

of 
We proceed to  representation ( b )  of Q 3 by discussing the circumferential variations 

CJii;; cl,/fi~ = ,f (A$), St = const. (12a) 

as depicted in figures 9-11. Again Roberts' (1973) correlation data a t  IL' = 9 0  are 
confirmed in figure 9. Our measurements a t  IL' = 3 0  (figure 10) show similar trends 
for the higher St with a correlation coefficient as high as - 0.85 at  St, = 0.135 for 
A$ = 180" meaning 85% coherence y a t  measuring positions 1.50 apart across the 
wake. That is an even stronger coherence than for signals only A$ = 30" apart ! 

With &, effectively zero for all our measurements, the relatively small or zero 
values of C,/@, and hence y for A$ around 90" shows up a peculiarity of correlations 
when dealing with large-scale structures which we want explicitly to inention here. 

( a )  Firstly, correlation curves need not look anything like that in figure 1. 
( b )  The notion of the degree of correlation or coherence of two signals being in- 

dicative of their statistical interdependence is no longer true when y reaches a number 
of minimum values a t  several A$. 

(c) Contrary to what one expects in less ordered turbulent fields, one may find 
local regions where signal coherence seems to  be enhanced with increasing spatial 
separation. Such apparent anomalies were already observed in the earlier jet studies 
but are by far more obvious in the wake. 
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FIGURE 10. Circumferential correlation and azimuthal constituents of narrowband components 
of the streamwise velocity fluctuations in disk wake at x = 30, r = 0.750.  0, St = 0.005; 0, 
St = 0.138; A, St = 0.270. 

( d )  High negative or correlations alternating in sign are found for probe separations 
in directions where there is definitely no wave propagation or mean convection 
(Q, r 0,  @, 0). These do not define characteristic wavelengths as in a progressive 
wave field. 

( e )  The definition of integral length scales 1 as in equation (4) is totally inappropriate 
in large-structured fields. Broad-band circumferential correlations, too, would be 
characterized by the anti-phase features of the strong vortex shedding components 
thus pretending a negligible 1. We cannot foIlow Prasad & Gupta (1977) either who 
computed streamwise, lateral, and spanwise scales in plane wakes by simply replacing 
the upper integral limit infinity by that location where a correlation crosses the 
abscissa for the first time. 

After these more general and qualitative remarks we may discuss the results of the 
Fourier analysis of the correlation curves in figures 9-1 1. The coefficients were plotted 
as 

for the three frequency regimes defined above. 
(i) Not very surprisingly, at  St, = 0.135 it  is the m = 1 constituent which is, by far, 

the strongest a t  any axial position in the velocity as well as in the pressure field. 
Hardly more than 10 yo of the fluctuations is contained in any of the other modes. A 
strong vortex shedding mode was already anticipated in 9 5 where we have seen an 
amazing similarity of spectra in the plane and in the axisymmetric wakes (figure 7) .  
We may now conclude that the alternating vortex shedding off the upper and lower 

C,,m/iiz; C,9m/@i =.f(m);  St = const. ( 1 3 4  
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FI~URE 1 1.  Circumferential correlation and azimuthal constituents of narrowband components 
of pressure fluctuations in disk wake at z = 30, T = 0.751). m, St = 0.005; @, St = 0.135; A, 
St = 0.270. 

parts of a cylinder is paralleled by an anti-phase relationship of signals in the thme- 
dimensional ( 3 4  wake. The latter proves the existence of a regular vortex formation 
whichis consistent with the notion of a flapping or fish-tail wiggling type of motion of 
the whole wake. 

Since, contrary to  the situation in the 2d wake, this flapping motion continuously 
changes its orientation in a random fashion, the correlation technique favoured in our 
approach is particularly suited for detecting and quantifying it. 

(ii) At high frequencies the correlation curves in figures 9-11 show a more con- 
ventional behaviour in that they fall almost monotonically with, a t  most, minor 
negative lobes. These trends 'reflect the presence of a large number of constituents 
simultaneously. The corresponding plots of Cw,,JG; and C,,,/fi: indicate only a 
marginal preference for them = 1 , 2  modes with contributions from m 2 8 constituents 
negligible as in the other frequency regimes. 

(iii) In  the frequency regime far below St, the m = 1 constituent is no longer a 
dominant feature of the axisymmetric wake. Instead, we find the m = 2 constituent 
gaining energy from the others as the wake develops further downstream. At x = 9D 
(figure 9) more than 60 % of the mean-square velocities 6; a t  St = 0.005 contribute 
to this particular mode which is characterized by an anti-phase relationship a t  points 
displaced by A$ = f 90" and by an in-phase relationship for Aq5 = 180". The corres- 
ponding correlation curve in figure 9 shows this very clearly. It is certainly not 
' consistent with a slow, random variation in the orientation of a flapping motion' aa 
was erroneously maintained by Roberts (1973). 
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FIUURE 12. Relative strength of individual constituents of wake structures. 

Correlations and Fourier analyses a t  II: = 9D, r = 0.830. 

Our complete set of cross spectral analyses in e.g. the plane x = 9D, enables 
correlation curves to  be plotted and Fourier analyses performed on them for any 
arbitrary St. As an interesting variant of representation ( c )  of 9 3 we may now plot 

with mode number m as a parameter. Figure 12 clearly shows that the m = 1 con- 
tribution is strongest a t  St = St, where the power spectrum iit itself reaches its 
maximum (compare with figure 6) .  This contribution gradually decays on both sides 
of St = St, whereas the influence of the m = 2 mode increases continuously with 
decreasing frequency. 

Thus the two peaks in the power spectrum of figure 6 do not only correspond to 
frequency regimes where the coherence of signals is exceptionally high (compare with 
the y/ymax plot in figure 6) but they are also seen to be associated with completely 
different geometrical structures of the wake. If we assume that all coherent structures 
in a wake presumably travel downstream a t  roughly the same speed, we might as well 
conclude that the two dominant structures, m = 1 and 3, must have longitudinal 
scales or wavelengths A, which differ by, at least, a factor of lo! Obviously, the 
higher mode m = 2 has a much larger axial scale just as if structures of a lower mode 
are merged in a larger structure of a higher mode on their way downstream. 

The m = 0 contribution is always smaller than that of the m = 1 and 2 constituents 
and remains almost constant over the whole range of frequencies considered here. 

To conclude this paragraph, which covers the main body of results, we plot nor- 
malized power spectra with reference to representation ( d )  of § 3, 

for the individual constituents m. I n  figure 13 the G:, spectrum is seen to be even more 
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FIGURE 13. Shape of power spectra of dominant azimuthal constituents of wake structures at 

z = 9D, r = 0.830.  Upper curve shows overall (unresolved) velocity power spectrum. 

narrowband in character than the overadl, i.e. unresolved, spectrum G:. On a log- 
arithmic decibel scale, its peak lies only 1 dB below G&,,ax while one octave below or 
above the vortex shedding frequency GL,l lies 5 or 6 dB below the respective values 
of 6:. The m = 2 spectrum, on the other hand, peaks about 2dB below the value of 
Gi a t  very low Sb. The m = 0 spectrum would lie a t  least 2-3dB below any of the 
other spectra. 

After having separated the predominant vortex shedding (m = 1) structure from 
the rest of the turbulence, we may now return to the periodic phenomena in wake 
flows. Previous investigators like Hwang & Baldwin (1966) were hardly able to 
identify the main peak in their velocity spectra. Calvert (1967) says that 'it has been 
known for some time that there are periodic phenomena associated with such flows, 
but that these are not nearly so predominant as in two-dimensional configurations ' . 
Nowhere in the wake was this periodicity sufficiently strong to be identified by either 
inspection of an oscilloscope trace or smoke observations except at  very low Reynolds 
number. 

Our m = I spectrum in figure 13 proves that our quantitative analysis reveals the 
periodicity inherent in the wake by removing, very efficiently, the apparent random- 
ness of its orientation in space which has blurred the picture. 

8. Comparison with large-scale structures in other flows 
I n  his experiments a t  Re = 5 x lo4 in the wake of cones with different vertex angles 

between 0" and 180" (thus including the cylinder and disk) Calvert (1967) found only 
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FIGURE 14. Shape of power spectra and coherence spectra of streamwise velocity fluctuations in 
the wake of a 120" cone. x , power spectrum at x = 30, r = 0.750; 0, coherence spectrum, 
A d  = 180". 

weak periodic motions. Yet he reported typical Strouhal numbers between 0.246 and 
0.135, the latter value agreeing very well with our own disk results. It would be 
interesting to repeat our quantitative analysis with other bluff bodies. So far, we can 
only compare with the results obtained with a 120" cone. The spectra and cross 
spectra in figure 14 show only a slight shift of&, to 0-145 compared to 0.135 for the 
disk. This trend confirms earlier observations in the wake of 2d bluff bodies. Roshko 
(1955) found that the shedding frequency scales on the width of the wake which 
tends to become larger for bluffer bodies of the same frontal area. 

The correlation curves for the 120" cone in figure 15 show only minor differences 
when compared to the disk results in figure 10. Whether or not the wake structures 
will change more dramatically when cones of smaller vertex angles or the cylinder in 
a parallel flow are considered remains to  be seen. Calvert's (1967) similarity considera- 
tions were, in any case, restricted to the mean flow properties and single-point 
fluctuation measurements only. Likewise, Roshko's ( 1  955) statement that  ' the shape 
or bluffness of the body has no characteristic effect on the wake other than to deter- 
mine its geometrical and velocity scales' needs further consideration in view of the 
large-scale structures described in this paper. 

The striking periodicity, coherence and regularity which we have identified in our 
experiments does not seem to exist in the wake formed downstream of central disks 
located on the centre-line of an annular j e t .  This follows from DuriZo & Whitelaw 
(1978), who found the mean flow and single-point turbulent characteristics a t  6 jet 
diameters downstream to be very close to  those of a fully developed free jet. 
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FIQURE 15. Circumferential correlation and azimuthal constituents of velocity fluctuations in the 
wake of a 120" cone at J: = 30, r = 0.750. 0, St = 0.005; 0, St = 0.145; A, St = 0.290. 

The last finding agrees with our own experience with a cylindrical centre-body in a 
circular je t  (figure 3). The composition of the large-scale structures by their azimuthal 
constituents remains more or less unaltered by the presence of the centre body. In  
particular, the prevailing angular vortex mode (m = 0 )  which presumably does not play 
an important role in any of the wake flows is only slightly affected by the centre body. 

It was adready pointed out as another major difference between axisymmetric jet 
and wake structures that their frequency spectra are considerably broader in the jet 
than in the wake (compare figures 5 and 6). This also becomes evident when normalized 
cross spectra are compared (figures 2 and 8). 

The most important difference, however, and one of the main results of the present 
investigation is that the predominant constituents of the wake structures all exhibit 
completely different spectral distributions with only the m = 1 mode peaking a t  St, 
while the individual jet structures seem to be strongest in a broadly identical range of 
St (compare figures 4 and 13). 

As far as a comparison with the coherent structures in 2d wakes is concerned, one 
would wish to compare the m = I spectrum of figure 14 with not just the overall 2d  
wake spectrum in figure 7 but with one that has been cleared of those flnctuations 
which are not strictly anti-phase across the wake. By using the sum and the difference 
of signals picked up on both sides of the 2 d wake one might be able to quantify two 
structural components corresponding to  the m = 0 and 1 constituents in the axi- 
symmetric wake. Two-point correlations in the near wake of a 90" wedge by Prasad 
& Gupta (1977) with probe separations in all three directions are considered as a 
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first step towards a more comprehensive description of 2 d  wake structures. The 
out-of-phase nature of u fluctuations due to alternate vortex shedding is but weakly 
indicated in some of their lateral correlations. 

Our finding of an almost negligible axisymmetric (m = 0 )  constituent in the wake 
of a circular disk or cone agrees very nicely with Taneda's (1978) visual observations 
of the flow past a sphere. At all Reynolds numbers Re ranging from 400 to 106 he found 
the sphere wake to never become axisymmetric. At lo4 < Re < 3.8 x lo5 the sphere 
wake performs a progressive wave motion in a plane containing the streamwise axis 
through the centre of the sphere. By means of smoke photographs under 90' from 
above and from the side like those in his figure 5 Taneda (1978) was able to show that 
this plane rotates slowly and irregularly about the symmetry axis. The streamwise 
wavelength equals 4.5 times the sphere diameter, the Strouhal number is St, = 0.2. 
Recalling that bluffer bodies have lower St, according to Roshko (1  955) and Calvert 
(1977), we do not hesitate to directly relate the wave structure in the sphere wake 
to  our m = 1 constituent of the disk wake structures. 

I n  this context the visual observations by Pao & Kao (1977) of the sphere wake in 
a vertically stratified fluid are very informative. Obviously, the stratification provides 
a preferred direction for the wake oscillations by inhibiting its vertical motions. As a 
result, at several sphere diameters downstream, a quasi-two-dimensional vortex 
pattern (of a m = 1 structure) is clearly seen to form in the horizontal plane. While 
a top view of this particular wake reveals all the details of the wake development, a 
side view shows the complete absence of oscillations in the vertical plane. 

Our suggestion of a predominant m = 1 structure in the wake of any arbitrary 
axisymmetric body is also confirmed by Achenbach's ( 1  974) measurements in the near 
wake of a sphere in a homogeneous uniform flow. By watching oscilloscope traces of 
hot-wire signals recorded a t  symmetrical positions Aq5 = 180" apart circumferentially, 
he found the anti-phase situation of the m = 1 structure. We cannot follow Achen- 
bach, however, when he associates this as a phase difference of 180" due to a rotation 
of the wake around the symmetry axis. It is extremely unlikely that a preferred 
direction was induced by the rotation of his blower generating the flow, simply because 
it was exactly the same 180" phase difference that was repeatedly measured under 
completely different upstream conditions like ours. Our view of a random orientation 
in q5 of a turbulent structure (m = 1)  with a built-in anti-phase characteristic of the 
kind described above is in accordance with that of Taneda (1978). 

As the alternating vortex shedding is known to exert a fluctuating lift on a cylinder 
in a cross flow, one may likewise imagine the sphere or other bluff bodies to be subject 
to an alternating side force the direction of which is, in general, completely random 
but always normal to  the axis of symmetry. It is pointed out here that no such lateral 
force will result from any of the other m + 1 constituents of the wake structures even 
if they were equally strong. 

It may be noted in passing that in the axisymmetric jet case it is the strong m = 0 
structure that may have an equivalent net effect by causing the forward thrust of 
the jet to fluctuate thus forming some kind of a feed-back loop. This self-excitation 
of a jet by a pressure that is in phase over the whole of the nozzle exit plane and which 
is induced by merely the large coherent structures developing further downstream 
may well be the reason for the m = 0 constituent to  be predominant in jet flows. 
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9. Conclusions 
The description of the unsteady processes in the wake flow of axisymmetric bodies 

represents a long-standing problem of considerable practical relevance. I n  a note on 
a paper by Stanton & Marshall (1931) L. Rosenhead put forward some early sug- 
gestions about a possible ‘periodic discharge of irregularly shaped ring vortices-’. 
Roshko (1955) deplores the lack of a theory comparable to that of K&rm&n for the 
2d vortex street. P .  D. Richardson, in a printed discussion of Carmody’s (1964) 
article, most vividly expressed the need for detailed investigations into the large-scale 
structures in the wake regions close behind bluff bodies. He already stated that ‘it 
appears unlikely that a flow possessing distinct and large-scale periodic characteristics 
can be adequately described and understood in terms of a time-mean flow ’. Richardson 
proposed the use of (a suitable hot-wire array to determine the instantaneous direction 
of flow; the range, distribution, and space-time correlation of this would be very 
useful information, as would be the local direction correlation also’. He concluded that 
‘we have a long way to go in developing techniques of measurement and interpretation 
before we can be satisfied that we have a sound understanding of the more important 
details of wake flows’. 

We do not claim to have solved the whole problem although our two-point cross 
spectral analysis and the subsequent spatial resolution of the structures into their 
azimuthal constituents comes near to  what P. D. Richardson, Calvert (1967) and 
others seem to have called for as a new measuring and analysing technique. Our 
interpretation of the results is still based on a schematic or symbolic rather than on a 
physical description of the large-scale structures. The elementary constituents of these 
structures could be determined in a systematic and quantitative manner. No attempt 
will be made, however, to speculate about the nature and the origin of the geometric- 
ally different structures identified in axisymmetric wakes. It is not a t  all clear a t  the 
moment how these could be associated with (horseshoe type vortices ’ or ‘double-helix 
vortex loops ’ (Pa0 & Kao 1977). Nor do we see a possibility to relate our coherent flow 
structures to any kind of statistical eddy model of the turbulence, We are not even 
sure whether turbulence researchers would term the large-scale phenomena turbulent 
as we did. 

The proposed technique for describing the large-scale coherent structures in axi- 
symmetric flows may, with some modifications, be applied to other flow configurations, 
notably those which allow a Fourier analysis in one (or more) distinguished spatial 
co-ordinate like, e.g., in the spanwise or chordwise directions of Zd wakes. 

The expansion method is not restricted to ordinary long-time averaged two-point 
cross correlations. It may equally well be applied to turbulent signals which have 
been conditioned beforehand such as to reveal details of the structures where this is 
felt to be essential. This may be necessary when studying, e.g., certain intermittent 
phenomena in free or bounded shear layers. 

Our approach, though generally applicable, will lose its special virtues when 
dealing with a turbulence field that is something like small-scale homogeneous and 
isotropic, in which case it would yield not just a few lower-order constituents but a 
very large number m of constituents of comparable strength and relevance. 

Fortunately enough, an amazingly small number of azimuthal constituents rep- 
resenting relatively simple elementary structures or modes suffice to describe the 
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unsteady flow in axisymmetric jets and wakes. The m = 0 and m = 1 constituents 
clearly dominate the initial region of jets at least down to x = 1OD. The power spectra 
of both modes are basically similar with their Strouhal frequency peak varying 
inversely proportional to the downstream distance x. In  the wake behind a disk or a 
cone, on the other hand, it is the m = 1 constituent alone that governs the coherent 
structures at the vortex shedding Strouhal number St, whereas the m = 2 constituent 
dominates at very low frequencies. 

Whether one can artificially excite the missing m = 0 mode in axisymmetric wakes 
by means of e.g. an externally applied sound field is an open question. Destruction 
of all the periodic wake phenomena seems to be easily achievable; Fail, Lawford & 
Eyre (1959) report that ‘perforating the-plate can eliminate the regular shedding of 
eddies and reduce the random low-frequency velocity fluctuations ’. 

In  any case, our quantitative analysis of large-scale turbulent structures can serve 
as a diagnostic tool for investigating the unsteady characteristics of a variety of flow 
configurations with and without solid boundaries. It is intended, among other things, 
to apply a similar correlation technique to the coherent structures in turbulent duct 
flows. Applications to other than axisymmetric flows will foIlow. 
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